G 6825

(Pages:2)

Reg.	No
Nam	ρ

B.TECH. DEGREE EXAMINATION, APRIL 2011

Fourth Semester

Branch : Computer Science and Engineering

COMPUTER ORGANIZATION (R)

(Regular/Improvement/Supplementary)

Time : Three Hours

Maximum: 100 Marks

Part A

Answer **all** questions. Each question carries 4 marks.

- 1. A digital computer has a common bus system for 16 registers of 32 bits each. The bus is constructed with multiplexers :
 - (i) How many selection inputs are there in each multiplexer? —
 - (ii) How many multiplexers are there in the bus?
- 2. Explain the stored program concept.
- 3. Explain bit sliced ALU.
- 4. Compare and contrast serial and parallel adders.
- 5. Explain how a micro-instruction is executed in vertical approach.
- 6. Explain hardwired control.
- 7. Define and explain associative memory.
- (8.) Explain the terms : (a) Cache hit ; and (b) Cache miss.
- 9. Explain the working principle of an optical mouse.
- 10. Describe the GPIB standard.

ĩ

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer either Section (a) or (b) of each module. Each full question carries 12 marks.

Module 1

11. (a) With a neat diagram, describe how the CPU, memory and control units in a digital computer interact.

Or

(b) Describe the different bus structure and their organisations in a digital computer.

[•] Turn over

R 9

1

MODULE 2

2

12. (a) With a neat circuit diagram, explain how a two-level carry look ahead adder helps in improving the speed of addition.

Or

(b) With neat diagrams, describe the behaviour and structure of restoring division scheme with 2's complement members.

Module 3

13. (a) Draw and explain the organisation of nano program control. Compare the single level and two level controls.

Or

(b) With a neat flow chart, explain the fetch and execution cycle on the data path of a CPU.

MODULE 4

- 14. (a) Give the complete design of a 4 K × 8 memory module built out of 32 × 32 static MOS cell array chip with in-built decoders.
 - (i) Draw the block diagram of the memory module with the chip as the building block.
 - (ii) Also draw the internal block diagram of the chip and number of pins necessary on the chip.

Or

(b) Draw and explain a 3 × 2 associative memory. Explain how read/write operations are accomplished?

MODULE 5

15. (a) Describe the principle of operation of a VDU terminal specifying the RTL structure to control its operation.

Or

- (b) (i) What are graphic input-output devices? Explain any two each, bringing out their special features.
 - (ii) Compare and contrast DMA and IO interrupt I/O transfer schemes.

î

 $(\hat{8} + 4 = 12 \text{ marks})$ [5 × 12 = 60 marks]