G 7114

(Pages:4)

Reg.	No
Nam	P

B.TECH. DEGREE EXAMINATION, APRIL 2011

Fifth Semester

Branch—Computer Science and Engineering/Information Technology ENGINEERING MATHEMATICS-IV (R, T)

(Supplementary)

Time : Three Hours

Maximum: 100 Marks

Answer one question from each module. All questions carry equal marks.

Module I

1. (a) With usual notation, show that probability distribution of Queue-length is given by $\rho^n (1-\rho)$

where $\rho = \frac{\lambda}{\mu} < 1$ and $n \ge 0$.

(b) People arrive at a Theatre ticket booth in Poisson distributed arrival rate of 25 per hour. Service time is constant at 2 minutes. Calculate (a) the mean number in the waiting line; (b) the mean waiting time; (c) the utilisation factor.

(10 marks)

(10 marks)

2. (a) Derive Little's formula.

(b) A petrol station has two pumps. The service time follows exponential distribution with mean four minutes and cars arrive for service in a Poisson process at the rate of 10 in cars per hour. Find the probability that a customer has to wait for service. What proportion of time do the pumps remains idle ?

(10 marks)

(8 marks)

Module II

Or

- 3. (a) Solve by Newton's method $e^x = 4x$.
 - (b) Solve by Gauss Seidel method :

ť

*

8x - 3y + 2z = 20; 4x + 11y - z = 33; 6x + 3y + 12z = 35.

(12 marks)

Or

Turn over

(10 marks)

- 4. (a) Determine the root of $xe^x 3 = 0$ correct to 3 decimal places using Regula-Falsi method.
 - (b) Solve by Jacobi's method :

$$27x + 6y - z = 85; 6x + 15y + 2z = 72; x + y + 54z = 110.$$

(10 marks)

(10 marks)

Module III

5. (a) Using Newton's divided difference formula find the value of f(8) given :

 x :
 4
 5
 7
 10
 11
 13

 f(x) :
 48
 100
 294
 900
 1210
 2028

(10 marks)

(b) Using Simpson's 1/3 rule evaluate $\int_{0}^{2} \frac{dx}{1+x^{3}}$ to two decimal places by dividing the range into 4 equal parts.

(10 marks)

Or

5. (a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = 3.8$ from the following :—

x : 3 3.5 · 4 4.5 z : 1.4843 1.55023 1.60746 1.65801

(10 marks)

(b) Using Trapezoidal rule evaluate $\int_{1}^{2} \frac{dx}{x}$ by dividing the interval into 5 equal parts. (10 marks)

Module IV

7. (a) Using dual simplex method solve :

e

1

-

Maximize
$$Z = 6x_1 + 4x_2 + 4x_3$$

subject to

(10 marks)

(b) Use Big M-method to solve :

Minimize $Z = 4x_1 + 3x_2$ $2x_1 + x_2 \ge 10$ subject to $-3x_1 + 2x_2 \le 6$ $x_1 + x_2 \ge 6.$

Or

8. (a) Using Graphical method solve :

Minimize $Z = 3x_1$	$+2x_{2}$					
subject to	$5x_1$	+	x_2	≥	10	
	<i>x</i> ₁	+	x_2	≥	6	
	x_1	+	$4x_2$	≥	12	

(b) Using Simplex method solve :

1

Maximize Z =
$$4x_1 + 10x_2$$

subject to $2x_1 + x_2 \le 50$
 $2x_1 + 5x_2 \le 100$
 $2x_1 + 3x_2 \le 90$

Module V

- 9. (a) Explain an algorithm for solving a transportation problem.
 - (b) Using Vogel's approximation method find the solution of :

		Destination				
		A	В	С	Supply	
	1	2	7	4	5	
Source	2	3	3	1	8	
	3	5	4	. 7	7	
	4	1	6	2	14	
	Demand	7	9	18	34	

(10 marks)

(10 marks)

(10 marks)

(10 marks)

(10 marks)

Or

Turn over

(10 marks)

10. (a) Describe the method of solving an unbalanced transportation problem.

(b) Solve the transportation problem :

**

ť,

			To		
		Α	В	С	Availability
	I	50	30	220] 1
From	II	90	45	170	3
	III	250	200	50	4
Rea	uirement	4	2	2	

(10 marks) [5 × 20 = 10 marks]

4