F 2969

(Pages: 4)

Reg. No.

Name

B.TECH. DEGREE EXAMINATION, DECEMBER 2012

Third Semester

Branch : Computer Science/Information Technology

EN 010 301 B-ENGINEERING MATHEMATICS-II (CS, IT)

(New Scheme—Regular/Improvement/Supplementary)

Time : Three Hours

ť

Part A

Maximum: 100 Marks

Answer all questions briefly. Each question carries 3 marks.

1. Write in symbolic form :

- (a) All the world loves a lover.
- (b) It is not true that London is in India.
- (c) It is false that 7 + 6 = 13 and 5 + 5 = 7
- 2. Differentiate between one-to-one and onto functions.
- 3. Define equivalence relation.
- 4. Let A be any subset of the real number system R with the usual order. Under what conditions is
- 5. Draw a diagram for the graph $G = G(V, E), V = \{A, B, C, D\}, E = [\{A, B\}, \{D, A\}, \{C, A\}, \{C, D\}].$

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions. Each question carries 5 marks.

6. State and explain duality law. Write the dual of $\exists (P \lor Q) \land (P \lor \exists (Q \land \exists S))$.

- 7. The functions $f : A \to B, g : B \to C$ and $h : C \to D$. Prove that $h \circ (g \circ f) = (h \circ g) \circ f$.
- 8. Suppose R and S are transitive relations on a set A. Show that $R \cap S$ is also transitive.
- 9. Consider the power set P(A) of $A = \{a, b, c\}$ which is a bounded lattice under the operations of intersection and union. Find the complement of $X = \{a, b\}$ if it exists. 10. Draw a diagram of the following directed graph G where $V(G) = \{A, B, C, D, E\}$ and $E(G) = \{[A, D], C, D, E\}$

 $(5 \times 5 = 25 \text{ marks})$

Part C

2

Answer any one full question from each module. Each full question carries 12 marks.

Module 1

11. (a) Find the truth tables for :

- (i) $p \wedge (q \vee r)$ and
- (ii) $(p \wedge q) \vee (p \wedge r)$.
- (b) Verify that the proposition $p \lor \sim (p \land q)$ is a tautology.

Or

- 12. (a) Negate the following :
 - (i) $\forall x \exists y (p(x) \lor q(y))$.
 - (ii) $\exists x \forall y (p(x, y) \rightarrow q(x, y)).$
 - (b) Let $A = \{1, 2, 3, 4\}$ be the universal set. Determine the truth value of each statement :
 - (i) $\forall x, x+3 < 6$.
 - (ii) $\exists x, x+3 < 6$.
 - (iii) $\exists x, 2x^2 + x = 15$.

Module 2

- 13. (a) Suppose $f: A \to B$ and $g: B \to C$ are into functions. Show that $g \circ f: A \to C$ is an onto function.
 - (b) Solve each of the following linear congruence equations :
 - (i) $3x \equiv 2 \pmod{8}$.
 - (ii) $6x \equiv 5 \pmod{9}$.
 - (iii) $4x \equiv 6 \pmod{10}$.

ť

Or

14. (a) State and explain Euclidean algorithm. Use it to find the gcd of 1052 and 356. (6 marks)
(b) Using Pigeonhole principle show that the decimal expansion of a rational number, must, after some point, become periodic.

(6 marks)

Module 3

3

- 15. (a) Let A = {1, 2, 3,.....13, 14, 15}. Let R be the relation on A defined by congruence modulo 4.Find the equivalence classes determined by R.
 - (b) Determine whether or not each of the following is a partition of the set N of positive integers :
 - (i) $[\{n:b > 5\}, \{n:n < 5\}].$
 - (ii) $[\{n : n > 5\}, \{0\}, \{1, 2, 3, 4, 5\}].$
 - (iii) $[\{n: n^2 > 11\}, \{n: n^2 < 11\}].$
- Or
- 16. (a) Suppose R and S are reflexive relations on a set A. Show that $R \cap S$ is reflexive. (6 marks)
 - (b) Give examples of relations R on $A = \{1, 2, 3\}$ having the stated property :
 - (i) R is both symmetric and antisymmetric.
 - (ii) R is neither symmetric nor antisymmetric.
 - (iii) R is transitive but $R \cup R'$ is not transitive.

Module 4

17. (a) Let C be a collection of sets which are closed under intersection and union. Verify that (C, \cap, U) is a lattice.

(6 marks)

(6 marks)

(b) Consider the power set P(A) of $A = \{a, b, c\}$ which is a bounded lattice under the operations of intersection and union. Find the complement of $X = \{a, b\}$ if it exits.

(6 marks)

Or

18. (a) Suppose L is a bounded lattice with lower bound O and upper bound I. Show that O and I are complements of each other.

(6 marks)

- (b) Consider the lattice M in the figure shown below :
 - (i) Find the nonzero join-irreducible elements and the atoms of M.
 - (ii) Is M distributive?

ŝ,

(6 marks)

Module 5

4

19. (a) Let a, b and c be three distinct vertices in a graph. There is a path between a and b and also there is a path between b and c. Prove that there is a path between a and c.

(6 marks)

(b) Prove that any two simple connected graphs with *n* vertices, all of degree two, are isomorphic.

(6 marks)

Or

ť

- 20. (a) Show a tree in which its diameter is not equal to twice the radius. Under what condition does this inequality hold ? Elaborate.
 - (6 marks) (b) Prove that a pendant edge (an edge whose one end vertex is of degree one) in a connected graph G is contained in every spanning tree of G.

(6 marks) $[5 \times 12 = 60 \text{ marks}]$